Influence of hypovolemia on the pharmacokinetics and the electroencephalographic effect of propofol in the rat.
نویسندگان
چکیده
BACKGROUND Hypovolemia decreases the dose requirement for anesthetics, but no data are available for propofol. As it is impossible to study this in patients, a rat model was used in which the influence of hypovolemia on the pharmacokinetics and pharmacodynamics of propofol was investigated. METHODS Animals were randomly allocated to either a control (n = 9) or a hypovolemia (n = 9) group, and propofol was infused (150 mg x kg(-1) x h(-1)) until isoelectric periods of 5 s or longer were observed in the electroencephalogram. The changes observed in the electroencephalogram were quantified using aperiodic analysis and used as a surrogate measure of hypnosis. The righting reflex served as a clinical measure of hypnosis. RESULTS The propofol dose needed to reach the electroencephalographic end point in the hypovolemic rats was reduced by 60% (P < 0.01). This could be attributed to a decrease in propofol clearance and in distribution volume. Protein binding was similar in both groups. To investigate changes in end organ sensitivity during hypovolemia, the electroencephalographic effect versus effect-site concentration relation was studied. The effect-blood concentration relation was biphasic, exhibiting profound hysteresis in both hypovolemic and control animals. Semiparametric minimization of this hysteresis revealed similar equilibration half-lives in both groups. The biphasic effect-concentration relation was characterized by descriptors showing an increased potency of propofol during hemorrhage. The effect-site concentration at the return of righting reflex was 23% (P < 0.01) lower in the hypovolemic animals, also suggesting an increased end organ sensitivity. CONCLUSIONS An increased hypnotic effect of propofol occurs during hypovolemia in the rat and can be attributed to changes in both pharmacokinetics and end organ sensitivity.
منابع مشابه
Influence of hypovolemia on the pharmacokinetics and electroencephalographic effect of gamma-hydroxybutyrate in the rat.
BACKGROUND Hypovolemia alters the effect of propofol in the rat by influencing the pharmacokinetics and the end organ sensitivity. We now studied the effect of hypovolemia on the anesthetic gamma-hydroxybutyrate (GHB) because in contrast with propofol it increases blood pressure. METHODS Thirty-two rats were randomly assigned to undergo moderate hypovolemia or a control procedure. Each rat re...
متن کاملThe Effect of physical Activity on Spontaneous Electroencephalographic Activity in Rat
Introduction:Exercise and physical activity are important factors for human health.It has been reported that exercise can be considerably useful in the teratment of psychological diseases.in the present study the effect of running on Spontaneous Electroencephalographic Activity (EEG) of rats was investigated. Method:Male wistar rats weighting 190-250 gr were selected and divided into contro...
متن کاملInfluence of hypovolemia on the pharmacokinetics and the electroencephalographic effect of etomidate in the rat.
The influence of hypovolemia (removal of 30% of the blood volume) on the pharmacokinetics and pharmacodynamics of etomidate was investigated in the rat. Chronically instrumented animals were randomly allocated to either a control (n = 9) or a hypovolemia (n = 9) group, and etomidate was infused (50 mg/kg/h) until isoelectric periods of 5 s or longer were observed in the electroencephalogram. Th...
متن کاملDopaminergic D1 receptors in nucleus basalis modulate recovery from propofol anesthesia in rats
Objective(s): Melatonin, an important hormone secreted by the epiphysis, is a powerful anti-oxidant with a high potential to neutralize medical toxins. The goal of this study was to demonstrate the beneficial effect of melatonin on epididymal sperm and reproductive parameters in mice treated with acetylsalicylic acid (ASA).Materials and Methods:</stro...
متن کاملThe protective effect of carvacrol on kainic acid-induced model of temporal lobe epilepsy in male rat
Background and Objective: Temporal lobe epilepsy (TLE) is a chronic neurological disorder with spontaneous recurrent seizures and abnormal intracranial waves. Since the role of oxidative stress in the occurrence of epilepsy is inevitable, it seems that the use of antioxidants can prevent some of the complications resulting from this disease. This study was designed to assess the protective effe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesiology
دوره 93 6 شماره
صفحات -
تاریخ انتشار 2000